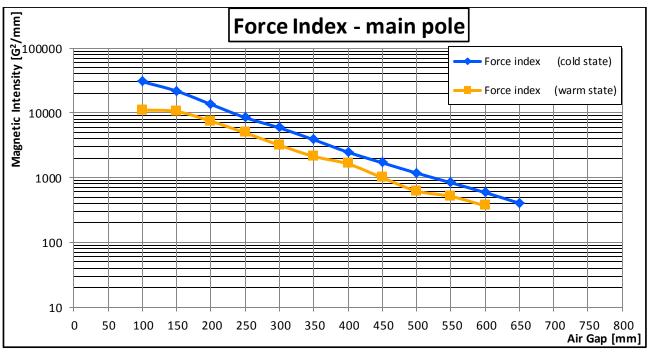
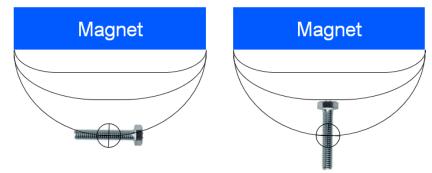

Testengineer	Jiří Semerád	
Test date	24-4-2018	
ERP reference	18OP010100000144	
Product key	ROE-08-C-140-W-G-L-B-B-B-NA	
Object of test	SEEB140022	
Magnettype	Electromagnet - main p.	
Teslameter	Tesla meter type: HGM09s, ser. number: 01113110	
Teslameter probe	HGM.T02.45.35.6., s.n.: 151113046	


State	Cold		Warm	
Am bient temperature	20	[C°]	20	[C°]
Oil temperature	23	[C°]	93,4	[C°]
Coil voltage	223	[V]	233	[V]
Coil current	44	[A]	31,6	[A]
Power	9,81	[kW]	7,3628	[kW]

Air gap	Magnetic Induction (cold state)	Force index (cold state)	Magnetic Induction (warm state)	Force index (warm state)
[mm]	[Gauss]	[Gauss²/mm]	[Gauss]	[Gauss²/mm]
0	3850		2500	
50	3330	36297	2230	11507
100	2760	30222	1984	11051
150	2235	21680	1673	10506
200	1790	13515	1356	7431
250	1480	8436	1125	4905
300	1220	5856	920	3165
350	1000	3840	781	2124
400	836	2466	648	1626
450	705	1692	530	996
500	596	1174	460	621
550	508	833	395	514
600	432	588	330	366
650	372	402	284	
700	324			
750	270			
800				
850				
900				

Test objects	Cold		Wa	ırm
Ball Ø 25 mm.	370	[mm]	310	[mm]
Hex nut M16 (DIN934)	-	[mm]	-	[mm]
Hex nut M30 (DIN934)	-	[mm]	-	[mm]
Nail Ø 2,5 x 63 mm.	820	[mm]	760	[mm]
Rod Ø 15x75 mm (VDE 0580)	700	[mm]	650	[mm]
Rod Ø 20x120 mm (VDE 0580)	-	[mm]	-	[mm]
Hex bolt M20x50	-	[mm]	-	[mm]
Distance of 400 gauss	620	[mm]	540	[mm]
Max [Gauss]	-	[mm]	-	[mm]


Notes:

- Flux density values measured from magnet (from wear plate = 0 mm)

Orientation:

When measuring a magnet, the orientation of the particle to be caught is very important. We believe that, placing the particle **always** horizontal, and the **centre** of the particle being zero, will give the most representative situation in comparison to the field. A bolt for example can be placed horizontally or vertically. The vertical situation is way easier to catch, but very unlikely to occur in practice.

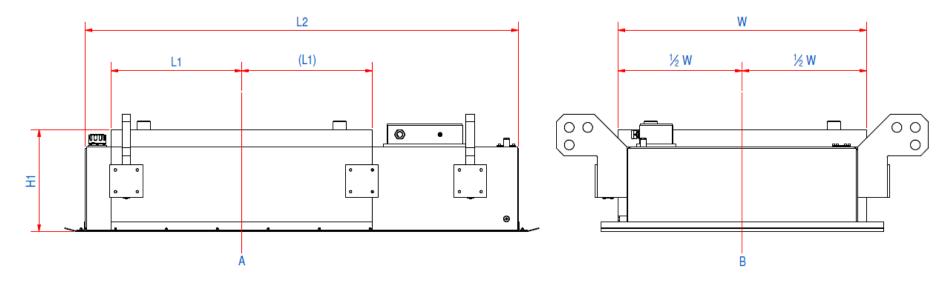
Size, shape and material:

The main factor that determines the type of magnet required, is the amount of Force Index (Gauss²/mm) that is needed to remove a target size and shape of ferrous from a burden of product material travelling at a certain belt speed.

Size

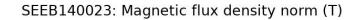
The size of an object is far less important than the shape of a ferrous particle to be caught. Theoretically the shape determines the catching distance. However, in the field, a ferrous particle is most likely underneath some material or some material sticks to it, making it heavier. This negatively affects the catching distance. This phenomenon will play a larger role with small sized particles compared to large sized particles.

Shape


Nails, beams, rods, plates and other oblong shapes are relatively easy to remove as they are easily orientated north-south and present a larger surface area to the magnet. Spherical shaped ferrous like; nuts, cubes, balls and spheres are very difficult to remove.

Material

Ferrous material is attracted by a magnet. The degree of magnetization of a material in response to a magnetic field is called permeability. Simply stated: the higher the proportion of Fe, the higher the permeability, the easier the particle is to catch.


Test objects	[Gauss²/mm]	[10 ⁻⁸ Tesla²/m]	Photo
Ball Ø 8 mm	3181	31810	۲
Ball Ø 25 mm	3181	31810	۲
Hex nut M16 (DIN934)	1650	16500	Ó
Hex nut M20 (DIN934)	1650	16500	Ó
Hex nut M30 (DIN934)	1650	16500	Ó
Nail Ø 2,5 x 63 mm	150	1500	
Ø 15 x 70 mm (VDE 0580)	550	5500	
Ø 20 x 120 mm (VDE 0580)	550	5500	
Hex bolt M20x70	267	2670	monorman and
Crown closure	200	2000	
Cube 12x12x12 mm	1600	16000	

Dimension	Length [mm]	
W	1330	The measurement spot of the main pole is located on the cross section of line A and B, right against the wear plate
L1	700	is the <u>0 mm mark</u> (start point for measuring). Performing a flux density measurement of <u>increasing steps of 50</u>
L2	700	<u>mm</u> gives a clear view on the performance and the condition of the magnet.
H1	484	

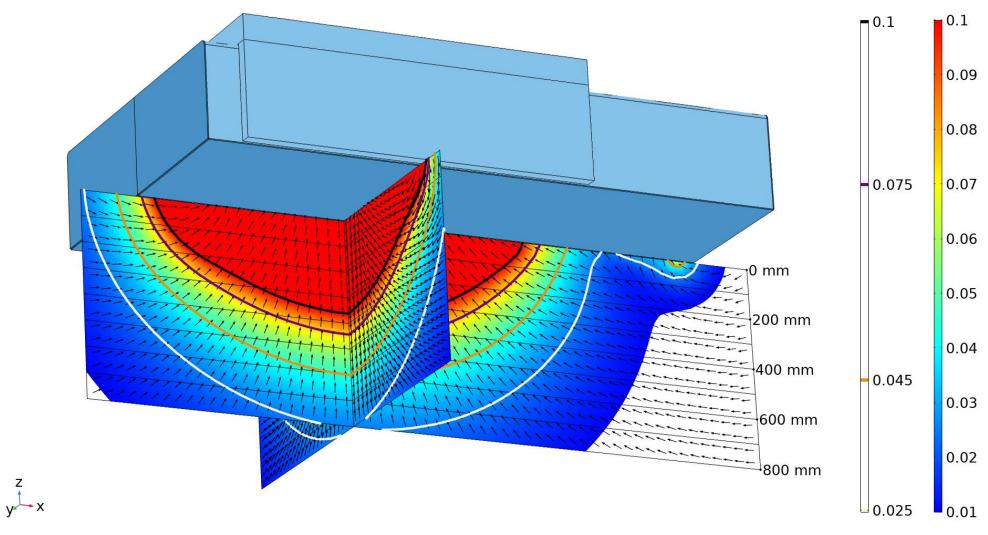


Figure 1: Simulated Flux density [Tesla] (cold state)

Note: Tesla to Gauss in this overview is x 10.000 (1 Tesla = 10.000 Gauss)

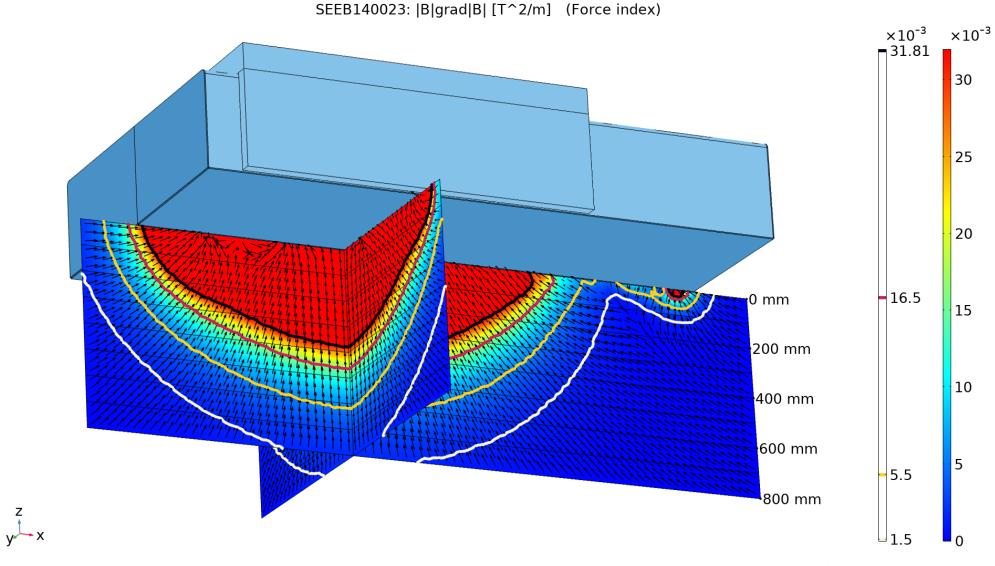


Figure 2: Simulated Force index [Tesla²/m] (cold state)

Note: Tesla²/m to Gauss²/mm in this overview is x 10^5 (1 Tesla²/m = 100.000 Gauss²/mm)

Page 6 of 6 – Test report **TR1805101**: Electro overband type SEEB1400xx ROE-08