Heavy-Duty Rod Ends PF with Integral Spherical Bearing

Material rod end: Alloyed, case-hardened steel (forged) quenched and tempered, bearing race hardened, ground and lapped. Thread rolled/cut, surface zinc-plated and chromatised. Material inner ring: Bearing steel hardened, precisely turned. Lubricant: Aluminium-complex-soap-grease, approval according to NSF H1, -45°C to +120°C. Special grease if required.

Short design with internal thread.

Threaded bars with metric ISO thread and ISO fine thread page 556.

IR = Internal **R**ight-hand thread. **IL** = Internal **L**eft-hand thread.

Ordering Details: e.g.: Product No. 634 410 00, Rod End PF

												Bearing lo	ads [kN]	Calcul	ation-	Speed	Weight
Product No.	Product No.	d1 ¹⁾	Bh12	C ₁	d ₂	d3	h ₁	l ₃	I ₇	G	α	dynam.	static	Fac	tors		-
IR	IL	mm	mm	mm	mm	mm	mm	mm	mm	mm	0	С	C ₀	Y	Y ₀	n _{max.}	g
634 410 00	634 460 00	10	13	9	30	15	38	17	14,5	M8	7	2,6	1,0	1,90	1,81	1225	63
634 415 00	634 465 00	15	16,5	12	40	19	51	24	20	M12	7	5,0	1,9	2,30	2,41	1025	143
634 420 00	634 470 00	20	20,5	15	48	22	65	32	22	M16	6,5	6,1	3,0	2,34	2,45	850	223

¹⁾ Tolerance DIN 620.

* in min-1

Inner Rings - Tolerances DIN 620									
Nominal dimension c m	n range of the bore I ₁ m	Tolerance in μm							
above	up to	min.	max.						
0,6	2,5	-8	+1						
2,5	10	-8	+1						
10	18	-8	+1						
18	30	-9	+1						
30	50	-11	+1						

Rough Calculation for Rod Ends/Ball Bearing Type

- = half the pivoting angle in ° β
- = dynamic load rating in N С
- = static load rating in N C_0
- Fa = axial load in N ($\tilde{F}_a \le 0.2 F_r$)
- = radial load in N Fr
- = speed or pivoting frequency in min⁻¹ n = dynamic equivalent radial load in N Ρ (for self-aligning ball bearing $\mathsf{P} = \mathsf{F}_{\mathsf{r}} + \mathsf{Y} \cdot \mathsf{F}_{\mathsf{a}})$ (for self-aligning roller bearing $P = F_{r} + 9.5 \cdot F_{a}$
- P_0 = Static equivalent radial load in N (for self-aligning ball bearing $P_0 = F_r + Y_0 \cdot F_a$) (for self-aligning roller bearing $P_0 = F_r + 5 \cdot F_a$) = axial factor, dynamic Y
- = axial factor, static Y₀

Loctite

Thread Locking page 849.

Nominal Service Life Ln (n)

Rotating:

$$Lh_{rot} = 10^{6} \frac{\left(\frac{C}{P}\right)^{Z}}{60 \cdot n} [h]$$

Oscillating:

$$Lh_{osz.} = 10^{6} \frac{\left(\frac{C}{P\sqrt{\frac{\beta}{90}}}\right)^{Z}}{60 \cdot n} [h]$$

$$z = 3$$
 for self-aligning ball bearing
z = 3.33 for self-aligning roller bearing

Conditions:

Pivoting angle $\beta \ge 3^{\circ}$ For pivoting angle $\beta < 3^{\circ}$ we recommend the use of rod ends with slide bearings.

Static load stationary:

 $\mathsf{P}_0 \leq \mathsf{C}_0 \; [\mathsf{N}]$

