Heavy-Duty Steel Rubber Bushes PHO-V, Vulcanized Version

Material: Metal Parts: Steel, zinc-plated.

Elastomer: Natural rubber, hardness 55° Shore A.

Version: With medium-hard rubber, vulcanized at the inner bush and the outer bush. Good flexibility. Suitable for medium radial load and high axial load and high torsion.


Fit: Up to external diameter 30mm: mounting hole H11 / H12.

From external diameter 34mm: mounting hole H13.

Temperature resistant up to 80°C.

Ordering Details: e.g.: Product No. 685 081 617V, Heavy Duty Bush PHO-V, 8 mm

	Internal	External	Length of Internal	Length of External	
B . I . I M .	Ø	Ø	Bush	Bush	147 - 11
Product No.	d	D		L	Weight
	mm	mm	mm	mm	g
685 081 617V	8+0,15	16+0,1	17±0,1	15±0,2	11
685 082 015V	8+0,15	20+0,1	17±0,1	15±0,2	18
685 082 210V	8+0,15	22+0,1	16 ^{±0,1}	10±0,2	16
685 101 818V	10+0,15	18+0,1	20±0,1	18±0,3	17
685 102 230V	10+0,15	22+0,1	33±0,1	30±0,3	48
685 102 414V	10+0,15	24+0,1	17±0,1	14±0,2	26
685 102 520V	10+0,15	25+0,1	24±0,1	20±0,3	44
685 122 435V	12+0,15	24+0,1	38±0,1	35±0,3	60
685 122 525V	12 ^{+0,15}	25 ^{+0,1}	28±0,1	25±0,3	45
685 122 618V	12 ^{+0,15}	26 ^{+0,1}	24 ^{±0,1}	18 ^{±0,3}	37
685 122 632V	12 ^{+0,15}	26+0,1	36±0,1	32 ^{±0,3}	56
685 133 040V	13 ^{+0,15}	30 ^{+0,1}	40 ^{±0,1}	40 ^{±0,3}	79
685 143 067V	14+0,15	30+0,1	76±0,1	67±0,3	155
685 163 216V	16 ^{+0,2}	32 ^{+0,15}	17±0,1	16±0,3	38
685 163 225V	16 ^{+0,2}	32 ^{+0,15}	28±0,1	25 ^{±0,3}	72
685 163 250V	$16^{+0,2}$	32 ^{+0,15}	54±0,1	50±0,3	120
685 164 032V	16 ^{+0,2}	$40^{+0,15}$	38 ^{±0,1}	32 ^{±0,3}	120
685 183 432V	18 ^{+0,3}	34+0,15	36±0,1	32±0,3	94
685 204 555V	$20^{+0,3}$	$45^{+0,15}$	62,5 ^{±0,1}	55 ^{±0,3}	255
685 204 559V	20+0,3	45+0,15	62,5±0,1	59,5±0,3	258
685 244 290V	24+0,3	42+0,15	96±0,1	90±0,3	645
685 255 065V	25+0,3	50+0,15	67,5±0,1	65,5±0,3	370
685 255 589V	25+0,3	55+0,15	93,5±0,1	89,5±0,3	677
685 264 040V	26 ^{+0,3}	40+0,15	45 ^{±0,1}	40 ^{±0,3}	220
685 305 589V	30+0,4	55+0,15	94±0,1	89,5± ^{0,3}	622
685 325 650V	32+0,4	56 ^{+0,15}	55 ^{±0,1}	50 ^{±0,3}	340
685 407 557V	40+0,4	75+0,20	70±0,1	57±0,3	759
685 507 060V	50+0,4	70+0,15	60±0,1	60±0,3	494
685 508 095V	50 ^{+0,4}	80+0,20	100±0,1	95±0,3	1020

General

These premium rubber-metal, heavy-duty bushes feature a high flexibility with good vibration damping. The medium-hard rubber allows a medium-high radial load. The high axial load and large permissible torsional deformation is achieved because the rubber parts are firmly attached to the metal parts. The bushes withstand radial, axial and torsional load, without the rubber moving in relation to the metal parts. Minimal gimbal offset (tilting) of the axis of the inner tube in relation to the outer tube, or vice versa, is possible. The stiffness depends on the strength and length of the rubber.

Can be used in machine building or car manufacture as elastic joints, which at permanent operation have to withstand a deflection of approx. ±15° and have to absorb higher radial forces. During deflection a recoiling moment occurs, which is proportional to the torsional angle, as the rubber cannot move in relation to the

metal. The bushes are completely maintenance free, silent and vibration isolating along with a high fatigue strength. Spring element and joint are combined in one single element.

The grade of rubber used is not oil proof. An operating temperature of max. 80° must not be exceeded, otherwise the service life is shortened. The bushes are usually fixed to the outer tube by pressfit. The inner tube can, e.g., be fixed by applying pressure on the front face. In this case the bolt running through the bore of the bush presses the counter bearing against the front face of the inner tube.

